The Feasibility of Advanced Metering Infrastructure (AMI)

A Universal Metering Strategy in a Caribbean Water Utility

Purpose of Presentation

- To examine the technical and economic feasibility of implementing an Advanced Metering Infrastructure (AMI) system.
- The case of Water & Sewerage Authority (WASA) in Trinidad & Tobago

Presentation Outline

- Background
- What is AMI
- AMI Implementation Options
- Cost/Benefit Analysis of AMI
- Comparison of Other Metering Options
- Conclusion

Background

- WASA is the sole water utility in Trinidad & Tobago with over 360,000 customers
- WASA uses a flat fee system to bill most customer

Major Disadvantages:

- Billing is de-coupled from consumption
- Does not encourage conservation
- Puts economic burden of leaks & losses on the utility

Universal Metering

- Introduce universal metering system
- In this system:
 - All customers billed based on volumetric consumption
 - Losses on customers' premises borne by customers

Results:

- Reduce water loss
- Encourage conservation

USEPA: "metering can reduce consumption by 20 to 40%"

What is AMI?

A metering system in which a <u>fixed</u> network is used to communicate between meters and utility.

Features:

- Two-way communication
- Hourly consumption data
- Meter status information
- On-demand readings
- Control of network elements

Network technology includes:

 Radio Frequency, Power Line Carrier, Broadband over Power Line

Benefits of AMI

- Reliable Delivery of Data
- Water Conservation
- Customer access to near real-time usage information
- Real-time Leakage Detection & Monitoring
- Remote utility management
 - Supply management
 - Tamper notification
 - Theft detection
- Environmental Benefits

Other Metering Options

- Conventional Metering
 - A manual system
 - Meter records consumption
 - Meter reader visits each premises
 - Submits readings to billing dept

- Automatic Meter Reading (AMR)
 - Meter stores hourly consumption & status data
 - Data is read wirelessly by handheld or mobile reader
 - Data is submitted electronically to billing dept

WASA has <u>two</u> implementation options:

- Option A Build own AMI Network
- Option B Use existing AMI Network of T&TEC

Option A – Build Own Network:

- Feasibility Analysis
- Design system
- Acquire, install and commission network hardware & software
- Acquire & install 360,000 two-way smart meters

Information & Assumptions:

- Life of systems is 20 years
- Costs inflation of 5% per annum
- NPV discount rate of 8.24% (cost of embedded debt)
- Cost of AMI network @ \$125 per meter
- Cost of 360,000 meters @ \$250 each
- Cost of installing 360,000 meters @ \$150 per meter
- Maintenance cost of 0.1% of capital cost per annum

All amounts in US\$

Option A – Build Own Network:

- Cost of system:
 - Capital cost \$189 million
 - Operating cost \$1.02 million
 - Maintenance cost \$1.35 million
 - TOTAL COST: \$191.4 million

- Acquire & Install 360,000 two-way smart meters
- Data & payment arrangement with T&TEC

- Questions to consider:
 - □ Are uses of both utilities Compatible?
 - □ Can system provide needed functionality?
 - ☐ Is there sufficient Capacity for both utilities?
 - What type of data delivery & payment arrangements?

- Compatibility
 - Collectors in T&TEC's AMI Network are designed to handle Water, Electric and Gas simultaneously
 - Must use Itron endpoints available for most meters
 - Preliminary tests demonstrated compatibility

- **☑**Compatibility
- Technical capability
 - Can T&TEC's system provide the functionality needed by WASA?
 - Meter reading
 - Supply management
 - Leakage detection & monitoring
 - Ascertain WASA's needs & whether modules installed

- **☑**Compatibility
- ☑ Technical capability
- Capacity
 - Can the system accommodate data transfer demand of both utilities for current & future needs?
 - T&TEC uses about 20% of capacity
 - WASA is expected to use even less
 - Both combined will use less than 40% of capacity
 - Will take 40 years to reach 80% capacity

- **☑**Compatibility
- **☑**Technical capability
- ☑ Capacity
- Contractual Arrangements
 - How will data transfers be handled?
 - Procedure for remote control functions?
 - How will WASA pay for service?
 - Negotiated or mandated by shareholder?

- Managed Service Contract:
 - T&TEC is responsible for system
 - T&TEC provides consumption & status data to WASA
 - T&TEC processes remote utility activities
 - WASA pays a monthly fee for the services
 - Monthly fee of \$0.20 per meter per month

- **☑**Compatibility
- **☑**Technical capability
- **☑** Capacity
- ☑ Contractual Arrangements

- Cost of System:
 - Capital cost \$144 million
 - Operating cost \$6.5 million
 - Maintenance cost \$1.03 million
 - TOTAL COST: \$151.5 million

TABLE 1 - COST OF AMI OPTIONS

NPV of AMI COSTS						
	Option A	Option B				
Capital Cost	189,000,000	144,000,000				
Operating Cost	1,021,918	6,489,244				
Maintenance Cost	1,346,717	1,026,070				
TOTAL COST	191,368,635	151,515,315				

Benefits Analysis

- Projected Benefits include:
 - Reduced Consumption
 - Reduced leakage & theft
 - CAPEX Avoidance
 - Reduced CO₂ Emissions Carbon Credits
 - Reduced security cost of High Risk Areas
 - Increased Operational Efficiency

Information & Assumptions:

- WASA's unit operational cost per m³: \$0.6641
- Water supply accounts for 800k tons of CO2 at \$8/ton
- Total Water production: 220 mgd
- Desalination produces 12% of supply
- Leakage & theft: Reduced from 51% to 25%
- Improved Operational efficiency: 5%
- AMI reduces High Risk Security cost by 20%
- CAPEX Avoidance: \$74 million

TABLE 2 - BENEFITS OF AMI

NPV of BENEFITS OF AMI				
	Option A	Option B		
Reduced Consumption	423,138,547	423,138,547		
Reduced Leakage & Theft	449,044,989	449,044,989		
CAPEX Avoidance	74,218,750	74,218,750		
Carbon Credits	34,211	34,211		
Reduction in High Risk Areas Security cost	2,062,829	2,062,829		
Increased Operational Efficiency	86,354,806	86,354,806		
TOTAL BENEFITS	1,034,854,132	1,034,854,132		

TABLE 3 - NET BENEFIT OF AMI OPTIONS

	Option A	Option B
Capital Cost	(189,000,000)	(144,000,000)
Operating Cost	(1,021,918)	(6,489,244)
Maintenance Cost	(1,346,717)	(1,026,070)
Reduced Consumption	423,138,547	423,138,547
Reduced Leakage & Theft	449,044,989	449,044,989
CAPEX Avoidance	74,218,750	74,218,750
Carbon Credits	34,211	34,211
Security cost Avoidance	2,062,829	2,062,829
Operational Efficiency	86,354,806	86,354,806
NET BENEFIT	843,485,497	883,338,817

TABLE 3 - NET BENEFIT OF AMI OPTIONS

Option A

Option B

NET BENEFIT

843,485,497

883,338,817

- Both options show positive net benefit over life of system
- Option B "Use Existing AMI Network of T&TEC" is preferred:
 - Greater net benefit of approx \$40 million more
 - Lower capital cost

Comparison of Systems

INFORMATION & ASSUMPTIONS

- NPV discount rate 8.24%
- Cost inflation rate 5%
- Life of systems 20 years
- AMR
 - Reduces consumption by 20%, leakage from 51% to 35%
 - Increases operational efficiency by 1%
 - CAPEX Avoidance: \$63.5 million
 - Cost of meter & installation @ \$398 each
 - Maintenance cost @ 0.1% of capital cost

Conventional

- Reduces consumption by 10%, leakage from 51% to 40%
- CAPEX Avoidance: \$52.3 million
- Cost of meter & installation @ \$300 each
- Maintenance cost @ 0.1% of capital cost

Comparison of Systems

TABLE 4 – COMPARISON OF NET BENEFIT OF METERING OPTIONS

	AMI			
	Option A	Option B	AMR	Conventional
Cost	(191,368,635)	(151,515,315)	(144,501,344)	(113,846,464)
Benefit	1,034,854,132	1,034,854,132	526,556,560	326,961,172
Net Benefit	843,485,497	883,338,817	382,055,216	213,114,708

Comparison of Systems

- All metering options provided net positive economic benefit
- AMI has highest overall Cost but provides greatest net benefit
- AMI is technologically advanced
 - Reduces risk of obsolescence
 - Increases learning curve

Conclusion

- AMI provides advanced tools for reducing losses, increasing operational efficiency and improving customer service
- AMI has high capital cost that can present financing challenge
- Use of existing AMI Network offers pragmatic way to reduce capital cost & avoid steep learning curve while retaining benefits
- AMI represents best economic option for WASA and customers

